

start work

Databases and Artificial Intelligence Group

TU Wien, Institute of Logic and Computation

Al and Optimization for Planning and Scheduling

Bus Driver Scheduling

Cover tours with complex rules for shifts:

Driving time *D*_s

passive ride end work

Rotating Workforce Scheduling

Generate a rotating schedule with constraints on sequences of shifts:

> Empl. Mo Tu We Th Fr Sa Su DDDDNN-

Solution Methods

- Constraint programming, meta-heuristics, branch-and-price, hybrid methods
- Algorithm selection and analysis

Hyper-bouristic

► Hyper-heuristics:

Total time T_s

2	_	-	А	Α	А	Α	Ν	
3	Ν	Ν	-	-	D	D	D	
4	Α	Α	Ν	Ν	-	-	-	

Minimum Shift Design

Cover demand minimizing different shifts:

			shift start	shift end	emp
			6:00	18:00	3
			12:00	24:00	2
12	18	24	21:00	9:00	1

пурег	-neuristic			Typer-neuristics.
Collect and independe number and type of	manage domai nt information: f heuristics, cha	n anges in	Ķ	problem- / domain-
evaluation function	, heuristic runti	me, etc.		ndependent
Domain Barrier				Choose among a
				set of low-level
Local search 1	Problem representation Problem instance		h	neuristics
Local search 2 Mutation heuristic 1	Evaluation function Initial (current) solution			dentify good
Proble	m Domain		C	chains (Luby)

Top results with reinforcement learning

Knowledge Graphs

Validating Shapes for Knowledge Graphs

Extracting (SHACL) shapes from large-scale knowledge graphs with **QSE** (Quality Shapes Extraction)

Understanding RDF Data Representations

Design space for triplestores

- Subdivision: How is the data fragmented to reduce the search space?
- Compression: How is the data compressed to reduce storage space?
- Redundancy: How is the data replicated to benefit specific access patterns?

How-Provenance Explanations

- How-provenance: Which triples of a knowledge graph contributed to a SPARQL query result?
- Expressed via commutative semi-rings of polynomials

SHACTOR: SHapes ExtrACTOR

- Interactive shapes extraction and updates
- Extract meaningful shapes

 \Rightarrow **SPARQLprov**: Applies query rewriting and works on top of standard RDF stores

Demo: Scan QR (sparqlprov.cs.aau.dk)

Computational Argumentation

Representation of Arguments and Attacks

Definition An argumentation framework (AF) F = (A, R)consists of arguments A and attacks $R \subseteq A \times A$.

Tractability via Backdoor-Treewidth

AFs are comprehensive and expressive - but computationally expensive

Treewidth: measures "tree-likeness"

Graph Motif Parameters

A set $E \subseteq A$ is

- ► conflict-free iff $(a, b) \notin R$ for all $a, b \in E$
- **stable** iff it is conflict-free and attacks all other arguments

Example AF

Stable: $\{x, v\}$ and $\{y, u\}$

- ► AFs with **collective attacks** (SETAFs): $R \subseteq (2^A \setminus \emptyset) \times A \rightarrow directed hypergraphs$
- **Claim-augmented AFs (CAFs)**: (A, R) to $(A, R, cl) \rightarrow$ directed labelled graphs
- CAFs can represent Logic Programs (LPs)

- Backdoors: removing few nodes leads to easy fragment
- Backdoor-Treewidth: combines the two

Definition

Given AF F = (A, R), $S \subseteq A$ is a backdoor (to acyclicity), if removing S breaks all directed cycles.

Construct the **torso**, an aggregated version of the AF that we reason on:

*S*₂

(*S*₄)

*S*3

But there are graphs that always have the same representation!

When can a GNN express a function?

A GNN can express function f if whenever $f(G) \neq f(H)$, then G and H have different representations.

Weisfeiler-Leman graph isomorphism test

Poster prepared by Lucas Kletzander. Based on work and posters by Lucas Kletzander, Nysret Musliu, Florian Mischek, Kashif Rabbani, Matteo Lissandrini, Katja Hose, Tomer Sagi, Torben Bach Pedersen, Luis Galárraga, Daniel Hernández, Anas Katim, Michael Bernreiter, Wolfgang Dvořák, Matthias König, Anna Rapberger, Stefan Woltran, Matthias Lanzinger, and Pablo Barceló.

Contact: lucas.kletzander@tuwien.ac.at