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Motivation & Goals

⋆
Efficient & seamless collaboration

with intelligent agents

Challenge: Collaboration in the face of

• (significant) mismatch in inputs

• non-aligned goals and constraints

• (complex) large state spaces

• constraints on sample complexity

• inaccurate mental models

Three key research directions

• Reinforcement Learning
• Reward / constraint inference
• Exploration & abstraction

• Interactive machine learning

• Probabilistic (generative) models

Reinforcement Learning & Inverse Reinforcement Learning

.

Specifying objectives is hard and the sam-
ple complexity for (naively) learning them is
often prohibitive

·
Intelligent agents must leverage potential for
generalization and actively seek relevant in-
formation

• Need to extend existing formalisms and problem
settings to better reflect real-world challenges

• Enable generalization by appropriate choices of
objects that generalize and learning about them
9 Requires tailored algorithms and
architectures

• Seeking relevant information to learn quickly
while enabling more elaborate modes of
interaction
9 Information-directed learning and active
information acquisition

Learning Constraints in CMDPs

� Constraints might generalize better than rewards

¥ Efficiently learning about constraints and trans-
ferring this knowledge across environments
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David Lindner, Xin Chen, Sebastian Tschiatschek, Katja Hof-
mann, Andreas Krause, Learning safety constraints from demon-
strations with unknown rewards, AISTATS’24.

Active Third-person Imitation Learning

� Leveraging different perspectives to faster learn
about the reward (also relevant for LLMs)
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Timo Klein, Susanna Weinberger, Adish Singla, Sebastian Tschi-
atschek, Active Third-Person Imitation Learning. arXiv preprint
arXiv:2312.16365, 2024

Interacting with People & Society

.
Algorithms’ impact on people and society is
increasing

·
AI design and development must account for
the involved/affected human stakeholders

• Need to understand algorithms and to
understand how people interact with algorithms

• Focus should not be put only on experts but all
affected stakeholders
9 Different information needs

• Stakeholders need to understand relevant
aspects of the socio-technical systems to take
the right actions
9 Tailored explanations and accounting for
uncertainty

Information Needs of Non-technical Lay People

Timothee Schmude, Laura Koesten, Torsten Möller, Sebastian
Tschiatschek. Information That Matters: Exploring Information
Needs of People Affected by Algorithmic Decisions. arXiv preprint
arXiv:2401.13324, 2024.

Challenging the Human-in-the-loop

Algorithmic Decision Making
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Sebastian Tschiatschek, Eugenia Stamboliev, Mark Coeckel-
bergh, Laura Koesten, Challenging the Human-in-the-loop in Al-
gorithmic Decision-making, Workshop on Humans, Algorithmic
Decision-Making and Society @ ICML’24


